|
||
166 Глава 4. Организация шин
просто путем замедления тактирования. Так, можно разрешить всем сигналам изменяться только по одному из фронтов ТИ, что создает достаточную заминку для распространения сигналов и их стабилизации.
В асинхронных шинах проблема должна быть решена либо в самом драйвере, либо за счет введения искусственной приостановки, компенсирующей излишнее быстродействие драйвера. Еще одна возможность — замедление цепей приемника.
Чтобы сделать приемники нечувствительными к отражениям и высокочастотному шуму, в них встраивают фильтры нижних частот. В шине NITS Altair, например, используются драйверы большой мощности и маломощные приемники. По причине быстрых драйверов и неудачного дизайна монтажной шины сигналы в этой шине сильно искажаются, но маломощные приемники достаточно медлительны и позволяют нивелировать большинство из дефектов сигнала.
Применяющиеся в настоящее время драйверы и приемники на базе транзисторно-транзисторной логики (ТТЛ) уже не в полной мере отвечают растущим требованиям. В новых шинах наметилась тенденция перехода к трансиверам на основе эмиттерно-связанной логики (ЭСЛ), как, например, в шине Fastbus. Замечательно, что одновременно с уменьшением емкости линий, уровней и крутизны фронтов сигналов, подавлением шумов в приемнике, в подобных трансиверах сохраняется преемственность со старыми устройствами: они допускают использование со стороны дочерних плат источников питания и сигналов, характерных для ТТЛ-технологии.
Обычно перед установкой или извлечением дочерней платы требуется отключение источника питания машины. В мультипроцессорных системах это крайне нежелательно, поскольку временное отключение питания приводит к необходимости перезагрузки и перезапуска каждого процессора. Некоторые системы проектируются так, что допускают извлечение и установку платы в присутствии питающего напряжения. В них обеспечивается сохранение состояния остальных плат, но работа шины временно приостанавливается. Естественно, что плата, которая была удалена и заменена на другую, уже не находится в исходном состоянии и должна быть инициализирована. Чаще всего реализация подобного режима оказывается чересчур дорогостоящей.
Распределение линий шины
Любая транзакция на шине начинается с выставления ведущим устройством адресной информации. Адрес позволяет выбрать ведомое устройство и установить соединение между ним и ведущим. Для передачи адреса используется часть сигнальных линий шины, совокупность которых часто называют шиной адреса (Ш К).
На ША могут выдаваться адреса ячеек памяти, номера регистров ЦП, адреса портов ввода/вывода и т. п. Многообразие видов адресов предполагает наличие дополнительной информации, уточняющей вид, используемый в данной транзакции. Такая информация может косвенно содержаться в самом адресе, но чаще передается по специальным управляющим линиям шины.
Разнообразной может быть и структура адреса. Так, в адресе может конкретизироваться лишь определенная часть ведомого, например, старшие биты адреса
|
||
|
||
|
||
Распределение линий шины 167
|
||
|
||
могут указывать на один из модулей основной памяти, в то время как младшие биты определяют ячейку внутри этого модуля.
В некоторых шинах предусмотрены адреса специального вида, обеспечивающие одновременный выбор определенной группы ведомых либо всех ведомых сразу (broadcast). Такая возможность обычно практикуется в транзакциях записи (от ведущего к ведомым), однако существует также специальный вид транзакции чтения (одновременно от нескольких ведомых общему ведущему). Английское название такой транзакции чтения broadcall можно перевести как «широковещательный опрос». Информация, возвращаемая ведущему, представляет собой результат побитового логического сложения данных, поступивших от всех адресуемых ведомых.
Число сигнальных линий, выделенных для передачи адреса {ширина шины адреса), определяет максимально возможный размер адресного пространства. Это одна из базовых характеристик шины, поскольку от нее зависит потенциальная емкость адресуемой памяти и число обслуживаемых портов ввода/вывода.
Совокупность линий, служащих для пересылки данных между модулями системы, называют шиной данных (Ш Д). Важнейшие характеристики шины данных — ширина и пропускная способность.
Ширина шины данных определяется количеством битов информации, которое может быть передано по шине за одну транзакцию {цикл шины). Цикл шины следует отличать от периода тактовых импульсов — одна транзакция на шине может занимать несколько тактовых периодов. В середине 1970-х годов типовая ширина шины данных составляла 8 бит. В наше время это обычно 32,64 или 128 бит. В любом случае ширину шины данных выбирают кратной целому числу байтов, причем это число, как правило, представляет собой целую степень числа 2.
Элемент данных, задействующий всю ширину ШД, принято называть словом, хотя в архитектуре некоторых ВМ понятие «слово» трактуется по-другому, то есть слово может иметь разрядность, не совпадающую с шириной ШД.
В большинстве шин используются адреса, позволяющие указать отдельный байт слова. Это свойство оказывается полезным, когда желательно изменить в памяти лишь часть полного слова.
При передаче по ШД части слова пересылка обычно производится по тем же сигнальным линиям, что и в случае пересылки полного слова, однако в ряде шин «урезанное» слово передается по младшим линиям ШД. Последний вариант может оказаться более удобным при последующем расширении шины данных, поскольку в этом случае сохраняется преемственность со «старой» шиной:
Ширина шины данных существенно влияет на производительность ВМ. Так, если шина данных имеет ширину вдвое меньшую чем длина команды, ЦП в течение каждого цикла команды вынужден осуществлять доступ к памяти дважды.
Пропускная способность шины характеризуется количеством единиц информации (байтов), которые допускается передать по шине за единицу времени (секунду), а определяется физическим построением шины и природой подключаемых к ней устройств. Очевидно, что чем шире шина, тем выше ее пропускная способность.
Последовательность событий, происходящих на шине данных в процессе одной транзакции, иллюстрирует рис. 4.9. Пусть устройство А на одном конце шины передает данные устройству В на другом ее конце.
|
||
|
||
|
||
168 Глава 4. Организация шин
|
||
|
||
|
||
|
||
Сначала устройство А выставляет данные на шину. Здесь ί3Λ — это задержка между моментом выставления данных устройством А и моментом их появления на шине. Этот интервал времени может составлять от 1 до 4 не. Как уже отмечалось, скорость распространения данных по шине реально не в состоянии превысить 70% от скорости света. Единственный способ уменьшения задержки распространения ίρ,. — сокращение длины шины. Когда сигнал достигает устройства, он должен бьпь «захвачен». Захват данных устройством В может быть произведен только по прошествии некоторого времени стабилизации. Время стабилизации £ст — это время, в течение которого данные на входе устройства В должны стабилизироваться с тем, чтобы их можно было однозначно распознать. Необходимо также упомянуть и время удержания tya — интервал, в течение которого информация должна оставаться на шине данных после того, как они были зафиксированы устройством В.
Общее время передачи данных по шине ta определяется выражением tn =tm + t + tCT + typ. Если подставить типовые значения этих параметров, получим 4 + 1,5 + + 2 + 0 = 7,5 не, что соответствует частоте шины 109/7,5 = 133,3 МГц.
На практике передача данных осуществляется с задержкой на инициализацию транзакции (ί„). Учитывая эту задержку, максимальную скорость передачи можно
определить как 1/( tn +tE)
Некоторые шины содержат дополнительные линии, используемые для обнаружения ошибок, возникших в процессе передачи. Выделение по одной дополнительной линии на каждый отдельный байт данных позволяет контролировать любой байт по паритету, причем и в случае пересылки по ШД лишь части слова. Возможен и иной вариант контроля ошибок. В этом случае упомянутые дополнительные линии используются совместно. По ним передается корректирующий код, благодаря которому ошибка может быть не только обнаружена, но и откорректирована. Такой метод удобен лишь при пересылке по шине полных слов.
Если адрес и данные в шине передаются по независимым (выделенным) сигнальным линиям, то ширина ШАи ШД обычно выбирается независимо. Наиболее частые комбинации: 16-8,16-16, 20-8, 20-16, 24-32 и 32-32. Во многих шинах адрес и данные пересылаются по одним и тем же линиям, но в разных тактах цикла шины. Этот прием называется временным мультиплексированием и будет
|
||
|
||
|
||
Распределение линий шины 169
|
||
|
||
рассмотрен позже. Здесь же отметим, что в случае мультиплексирования ширина ША и ширина ШД должны быть взаимоувязаны.
Применение раздельных шин адреса и данных позволяет повысить эффективность использования шины, особенно в транзакциях записи, поскольку адрес ячейки памяти и записываемые данные могут передаваться одновременно.
Помимо трактов пересылки адреса и данных, неотъемлемым атрибутом любой шины являются линии, по которым передается управляющая информации и информация о состоянии участвующих в транзакции устройств. Совокупность таких линий принято называть шиной управления (ШУ), хотя такое название представляется не совсем точным. Сигнальные линии, входящие в ШУ, можно условно разделить на несколько групп.
Первую группу образуют линии, по которым пересылаются сигналы управления транзакциями, то есть сигналы, определяющие:
• тип выполняемой транзакции (чтение или запись);
• количество байтов, передаваемых по шине данных, и, если пересылается часть слова, то какие байты;
• какой тип адреса выдан на шину адреса;
• какой протокол передачи должен быть применен.
На перечисленные цели обычно отводится от двух до восьми сигнальных линий.
Ко второй группе отнесем линии передачи информации состояния (статуса). В эту группу входят от одной до четырех линий, по которым ведомое устройство может информировать ведущего о своем состоянии или передать код возникшей ошибки.
Третья группа — линии арбитража. Вопросы арбитража рассматриваются несколько позже. Пока отметим лишь, что арбитраж необходим для выбора одного из нескольких ведущих, одновременно претендующих на доступ к шине. Число линий арбитража в разных шинах варьируется от 3 до 11.
Четвертую группу образуют линии прерывания.По этим линиям передаются запросы на обслуживание, посылаемые от ведомых устройств к ведущему. Под собственно запросы обычно отводятся одна или две линии, однако при одновременном возникновении запросов от нескольких ведомых возникает проблема арбитража, для чего могут понадобиться дополнительные линии, если только с этой целью не используются линии третьей группы.
Пятая группа— линии для организации последовательных локальных сетей. Наличие от 1 до 4 таких линий стало общепринятой практикой в современных шинах. Обусловлено это тем, что последовательная передача данных протекает значительно медленнее, чем параллельная, и сети значительно выгоднее строить, не загружая быстрые линии основных шин адреса и данных. Кроме того, шины этой группы могут быть использованы как полноценный, хотя и медленный, избыточный тракт для замены ША и ШД в случае их отказа. Иногда шины пятой группы назначаются для реализации специальных функций, таких, например, как обработка прерываний или сортировка приоритетов задач.
В некоторых ШУ имеется шестая группа сигнальных линий — от 4 до 5 линий позиционного кода, Подсоединяемых к специальным выводам разъема. С помощью
|
||
|
||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
170 Глава 4. Организация шин
перемычек на этих выводах можно задать уникальный позиционный код разъема на материнской плате или вставленной в этот разъем дочерней платы. Такой код может быть использован для индивидуальной инициализации каждой отдельной платы при включении или перезапуске системы.
Наконец, в каждой шине обязательно присутствуют линии, которые в нашей классификации входят в седьмую ipyimy, которая по сути является одной из важнейших. Это группа линий тактирования и синхронизации. При проектировании шины таким линиям уделяется особое внимание. В состав группы, в зависимости от протокола шины (синхронный или асинхронный), входят от двух до шести линий.
В довершение необходимо упомянуть линии для подвода питающего напряжения и линии заземления.
Большое количество линий в шине предполагает использование разъемов со значительным числом контактов. В некоторых шинах разъемы имеют сотни контактов, где предусмотрены подключение вспомогательных шин специального назначения, свободные линии для локального обмена между дочерними платами, множественные параллельно расположенные контакты для «размножения» пи1 тания и «земли». Значительно чаще число контактов разъема ограничивают. В табл. 4.1 показано возможное распределение линий 32-разрядной шины в 64-контактном разъеме.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Таблица 4.1. Распределение линий 32-разрядной шины в 64-контактном разъеме
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Выделенные и мультиплексируемые линии
В некоторых ВМ линии адреса и данных объединены в единую мультиплексируемую шину адреса/данных. Такая шина функционирует в режиме разделения времени, поскольку цикл шины разбит на временной интервал для передачи адреса и временной интервал для передачи данных. Структура такой шины показана на рис. 4.10.
Мультиплексирование адресов и данных предполагает наличие мультиплексора на одном конце тракта пересылки информации и демультиплексора на его дру-
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||
Арбитраж шин 1 7 1
|
||
|
||
|
||
|
||
гом конце. Мультиплексоры и демультиплексоры играют роль коммутирующих устройств.
Мультиплексирование позволяет сократить общее число линий, но требует усложнения логики связи с шиной. Кроме того, оно ведет к потенциальному снижению производительности, поскольку исключает возможность параллельной передачи адресов и данных, что можно было бы использовать в транзакциях записи, одновременно выставляя на ША адрес, а на ТТТД — записываемое слово.
Примером применения мультиплексируемой шины адреса/данных может служить шина Futurebus+.
|
||
|
||
Арбитраж шин
|
||
|
||
В реальных системах на роль ведущего вправе одновременно претендовать сразу несколько из подключенных к шине устройств, однако управлять шиной в каждый момент времени может только одно из них. Чтобы исключить конфликты, шина должна предусматривать определенные механизмы арбитража запросов и правила предоставления шины одному из запросивших устройств. Решение обычно принимается на основе приоритетов претендентов. J
|
||
|
||
Схемы приоритетов
|
||
|
||
Каждому потенциальному ведущему присваивается определенный уровень приоритета, который может оставаться неизменным (статический или фиксированный приоритет) либо изменяться по какому-либо алгоритму (динамический приоритет).
|
||
|
||