40 Глава 1. Становление и эволюция цифровой вьнгслителыюй техники
происходит пересылка информации, в ходе которой эта информация может под­вергаться определенным видам обработки. Пересылка информации между любы­ми элементами ВМ инициируется своим сигналом управления (СУ), то есть управ­ление вычислительным процессом сводится к выдаче нужного набора СУ в нужной временной последовательности. Цепи СУ показаны на рис. 1.3 полутоновыми ли­ниями. Основной функцией УУ является формирование управляющих сигналов, отвечающих за извлечение команд из памяти в порядке, определяемом програм­мой, и последующее исполнение этих команд. Кроме того, УУ формирует СУ для синхронизации и координации внутренних и внешних устройств ВМ.
Еще одной неотъемлемой частью ВМ является арифметико-логическое устрой­ство (АЛУ). АЛУ обеспечивает арифметическую и логическую обработку двух входных переменных, в результате которой формируется выходная переменная. Функции АЛУ обычно сводятся к простым арифметическим и логическим опера­циям, а также операциям сдвига. Помимо результата операции АЛУ формирует ряд признаков результата (флагов), характеризующих полученный результат и со­бытия, произошедшие в процессе его получения (равенство нулю, знак, четность, перенос, переполнение и т. д.). Флаги могут анализироваться в УУ с целью приня­тия решения о дальнейшей последовательности выполнения команд программы.
УУ и АЛУ тесно взаимосвязаны и их обычно рассматривают как единое уст­ройство, известное как центральный процессор (ЦП) или просто процессор. Поми­мо УУ и АЛУ в процессор входит также набор регистров общего назначения (Р О Н), служащих для промежуточного хранения информации в процессе ее обработки.
Типы структур вычислительных машин и систем
Достоинства и недостатки архитектуры вычислительных машин и систем изна­чально зависят от способа соединения компонентов. При самом общем подходе можно говорить о двух основных типах структур вычислительных машин и двух типах структур вычислительных систем.
Структуры вычислительных машин
В настоящее время примерно одинаковое распространение получили два способа построения вычислительных машин: с непосредственными связями и на основе шины..
Типичным представителем первого способа может служить классическая фон-неймановская ВМ (см. рис. 1.3). В ней между взаимодействующими устройствами (процессор, память, устройство ввода/вывода) имеются непосредственные связи. Особенности связей (число линий в шинах, пропускная способность и т. п.) опре­деляются видом информации, характером и интенсивностью обмена Достоинством архитектуры с непосредственными связями можно считать возможность развязки «узких мест» путем улучшения структуры и характеристик только определенных связей, что экономически может быть наиболее выгодным решением. У фон-ней­мановских ВМ таким «узким местом» является канал пересылки данных между ЦП и памятью, и «развязать» его достаточно непросто [56]. Кроме того, ВМ с не­посредственными связями плохо поддаются реконфигурации.
Типы структур вычислительных машин и систем 41
В варианте с общей шиной все устройства вычислительной, машины подключе­ны к магистральной шине, служащей единственным трактом для потоков команд, данных и управления (рис. 1.4). Наличие общей шины существенно упрощает реа­лизацию ВМ, позволяет легко менять состав и конфигурацию машины. Благодаря этим свойствам шинная архитектура получила широкое распространение в мини-и микроЭВМ. Вместе с тем, именно с шиной связан и основной недостаток архи­тектуры: в каждый момент передавать информацию по шине может только одно устройство. Основную нагрузку на шину создают обмены между процессором и памятью, связанные с извлечением из памяти команд и данных и записью в па­мять результатов вычислений. На операции ввода/вывода остается лишь часть пропускной способности шины. Практика показывает, что даже при достаточно быстрой шине для 90% приложений этих остаточных ресурсов обычно не хватает, особенно в случае ввода или вывода больших массивов данных.
В целом следует признать, что при сохранении фон-неймановской концепции последовательного выполнения команд программы шинная архитектура в чистом ее виде оказывается недостаточно эффективной. Более распространена архитек­тура с иерархией шин, где помимо магистральной шины имеется еще несколько дополнительных шин. Они могут обеспечивать непосредственную связь между устройствами с наиболее интенсивным обменом, например процессором и кэш­памятью. Другой вариант использования дополнительных шин — объединение однотипных устройств ввода/вывода с последующим выходом с дополнительной шины на магистральную. Все эти меры позволяют снизить нагрузку на общую шину и более эффективно расходовать ее пропускную способность.
Структуры вычислительных систем
Понятие «вычислительная система» предполагает наличие множества процессо­ров или законченных вычислительных машин, при объединении которых исполь­зуется один из двух подходов.
В вычислительных системах с общей памятью (рис. 1.5) имеется общая основ­ная память, совместно используемая всеми процессорами системы. Связь процес-
42 Глава 1. Становление и эволюция цифровой вычислительной техники
соров с памятью обеспечивается с помощью коммуникационной сети, чаще всего вырождающейся в общую шину. Таким образом, структура ВС с общей памятью аналогична рассмотренной выше архитектуре с общей шиной, в силу чего ей свой­ственны те же недостатки. Применительно к вычислительным системам данная схема имеет дополнительное достоинство: обмен информацией между процессо­рами не связан с дополнительными операциями и обеспечивается за счет доступа к общим областям памяти.
Рис 1.5.Структура вычислительной системы с общей памятью
Альтернативный вариант организации — распределенная система, где общая память вообще отсутствует, а каждый процессор обладает собственной локальной памятью (рис. 1.6). Часто такие системы объединяют отдельные ВМ. Обмен ин­формацией между составляющими системы обеспечивается с помощью коммуни­кационной сети посредством обмена сообщениями.
Рис 1.6.Структура распределенной вычислительной системы
Подобное построение ВС снимает ограничения, свойственные для общей шины, но приводит к дополнительным издержкам на пересылку сообщений между про­цессорами или машинами.
Перспективы совершенствования архитектуры ВМ и ВС
Совершенствование архитектуры вычислительных машин и систем началось с момента появления первых ВМ и не прекращается по сей день. Каждое изменение в архитектуре направлено на абсолютное повышение производительности или, по крайней мере, на более эффективное решение задач определенного класса. Эволю­цию архитектур определяют самые различные факторы, главные из которых пока­заны на рис. 1.7. Не умаляя роли ни одного из них, следует признать, что наиболее
Hosted by uCoz